Nitrous Formula Products Chemwatch: **5380-25** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **02/03/2020**Print Date: **03/03/2020**L.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ## **Product Identifier** | Product name | NF Race Formula Octane Booster | |-------------------------------|---| | Synonyms | Race 6 ron | | Proper shipping name | HYDROCARBONS, LIQUID, N.O.S. (contains solvent naphtha petroleum, heavy aromatic) | | Other means of identification | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Combustion catalyst stabiliser and improver for petrol engines. | |--------------------------|---| | Relevant identified uses | Use according to manufacturer's directions. | ## Details of the supplier of the safety data sheet | Registered company name | Nitrous Formula Products | | |---|--------------------------|--| | Address LOT 1850 Tudor Street WA 6315 Australia | | | | Telephone +61 0417181920 | | | | Fax Not Available | | | | Website nitrous.com.au | | | | Email | nitrous@live.com.au | | ## **Emergency telephone number** | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE | | |-----------------------------------|------------------------------|--| | Emergency telephone numbers | +61 1800 951 288 | | | Other emergency telephone numbers | +61 2 9186 1132 | | Once connected and if the message is not in your prefered language then please dial 01 ## **SECTION 2 HAZARDS IDENTIFICATION** ## Classification of the substance or mixture COMBUSTIBLE LIQUID, regulated for storage purposes only | Composition and the contrago purposes only | | | |--|--|--| | Poisons Schedule | S6 | | | Classification ^[1] | Flammable Liquid Category 3, Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 2, Acute Toxicity (Inhalation) Category 2, Germ cell mutagenicity Category 1B, Carcinogenicity Category 1B, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 2 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -
Annex VI | | ## Label elements Hazard pictogram(s) Chemwatch: **5380-25** Page **2** of **20** Version No: 2.1.1.1 NF Race Formula Octane Booster Issue Date: **02/03/2020**Print Date: **03/03/2020** ## Hazard statement(s) | H226 | Flammable liquid and vapour. | |--------|--| | H302 | Harmful if swallowed. | | H310 | Fatal in contact with skin. | | H330 | Fatal if inhaled. | | H340 | May cause genetic defects. | | H350 | May cause cancer. | | H336 | May cause drowsiness or dizziness. | | H304 | May be fatal if swallowed and enters airways. | | H402 | Harmful to aquatic life. | | H411 | Toxic to aquatic life with long lasting effects. | | AUH066 | Repeated exposure may cause skin dryness and cracking. | ## Precautionary statement(s) Prevention | | • | |------|---| | P201 | Obtain special instructions before use. | | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | P260 | Do not breathe mist/vapours/spray. | | P262 | Do not get in eyes, on skin, or on clothing. | | P270 | Do not eat, drink or smoke when using this product. | | P271 | Use only outdoors or in a well-ventilated area. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P281 | Use personal protective equipment as required. | | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P273 | Avoid release to the environment. | | P284 | Wear respiratory protection. | | | | ## Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. | |--|--| | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | P308+P313 | IF exposed or concerned: Get medical advice/attention. | | P320 | Specific treatment is urgent (see advice on this label). | | P322 | Specific measures (see advice on this label). | | P331 | Do NOT induce vomiting. | | P363 | Wash contaminated clothing before reuse. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam for extinction. | | P302+P350 | IF ON SKIN: Gently wash with plenty of soap and water. | | P391 | Collect spillage. | | P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. | | | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | P330 | Rinse mouth. | | | | ## Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | ## Precautionary statement(s) Disposal | P501 | Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. | |------|--| | | | Issue Date: **02/03/2020**Print Date: **03/03/2020** ### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|--| | 64742-94-5 | >75 | solvent naphtha petroleum, heavy aromatic | | 64742-95-6 | >5 | naphtha petroleum, light aromatic solvent | | 12108-13-3 | >5 | manganese 2-methylcyclopentadienyl tricarbonyl | | 95-63-6 | >5 | 1,2,4-trimethyl benzene | | Not Available | balance | Ingredients determined not to be hazardous | ## **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | ## Indication of any immediate medical attention and special treatment needed Any material aspirated
during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For petroleum distillates - In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration. - · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function. - · Positive pressure ventilation may be necessary. - Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia. - After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated. - · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications. - Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. BP America Product Safety & Toxicology Department Issue Date: 02/03/2020 Print Date: 03/03/2020 ## **SECTION 5 FIREFIGHTING MEASURES** ## **Extinguishing media** ► Foam. Version No: 2.1.1.1 - ► Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. ## Special hazards arising from the substrate or mixture | Fire Incompatibility | |----------------------| |----------------------| · Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | | resuit | |-------------------------|--| | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Explosion Hazard | Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) metal oxides other pyrolysis products typical of burning organic material. carbon monoxide (CO) | | HAZCHEM | 3Y | ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 | Methods and material for containment and cleaning up | | | |--|---|--| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | | | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. | | Chemwatch: 5380-25 Page 5 of 20 Issue Date: 02/03/2020 Version No: 2.1.1.1 Print Date: 03/03/2020 NF Race Formula Octane Booster Print Date: 03/03/2020 - Absorb remaining product with sand, earth or vermiculite. - ▶ Collect solid residues and seal in labelled drums for disposal. - ▶ Wash area and prevent runoff into drains. - ▶ If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling - ▶ DO NOT allow clothing wet with material to stay in contact with skin - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - ▶ Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - ▶ Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - ► DO NOT use plastic buckets - Safe handling Earth all lines and equipment. - ► Use spark-free tools when handling. - Avoid contact with incompatible materials. - Avoid Contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. #### Store in the dark. - ► Store in original containers in approved flammable liquid storage area. - ► Store away from incompatible materials in a cool, dry, well-ventilated area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access. - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - ▶ Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - ► Keep adsorbents for leaks and spills readily available. - ▶ Protect containers against physical damage and check regularly for
leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - ► Storage tanks should be above ground and diked to hold entire contents. ## Conditions for safe storage, including any incompatibilities ## Suitable container Other information - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - ► Check that containers are clearly labelled and free from leaks. Storage incompatibility ► Avoid reaction with oxidising agents ## **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ### **Control parameters** ## OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |--------------------|--|-------------------------------|-------|-----------|-----------|-----------| | Australia Exposure | manganese 2-methylcyclopentadienyl tricarbonyl | Methylcyclopentadienyl | 0.2 | Not | Not | Not | | Standards | | manganese tricarbonyl (as Mn) | mg/m3 | Available | Available | Available | Chemwatch: **5380-25** Page **6** of **20** NF Race Formula Octane Booster Issue Date: **02/03/2020**Print Date: **03/03/2020** ## **EMERGENCY LIMITS** Version No: 2.1.1.1 | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |--|---|------------------|------------------|-----------------| | naphtha petroleum, light aromatic solvent | Naphtha (coal tar); includes solvent naphtha, petroleum (64742-88-7), naphtha (petroleum) light aliphatic, rubber solvent (64742-89-8), heaevy catalytic cracked (64741-54-4), light straight run (64741-46-4), heavy aliphatic solvent (64742-96-7), high flash aromatic and aromatic solvent naphtha (64742-95-6) | | 6,700
mg/m3 | 40,000
mg/m3 | | manganese
2-methylcyclopentadienyl
tricarbonyl | Manganese tricarbonyl methylcyclopentadienyl | 0.3
mg/m3 | 0.6
mg/m3 | 6.9
mg/m3 | | 1,2,4-trimethyl benzene | Permafluor E+ | | 360
mg/m3 | 2,200
mg/m3 | | 1,2,4-trimethyl benzene | Trimethylbenzene, 1,2,4-; (Pseudocumene) | Not
Available | Not
Available | 480 ppm | | Ingredient | Original IDLH | Revised IDLH | |--|---------------|---------------| | solvent naphtha petroleum, heavy aromatic | Not Available | Not Available | | naphtha petroleum, light aromatic solvent | Not Available | Not Available | | manganese
2-methylcyclopentadienyl
tricarbonyl | 500 mg/m3 | Not Available | | 1,2,4-trimethyl benzene | Not Available | Not Available | ### OCCUPATIONAL EXPOSURE BANDING | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |---|--|----------------------------------| | naphtha petroleum, light aromatic solvent | Е | ≤ 0.1 ppm | | 1,2,4-trimethyl benzene | E | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | ## MATERIAL DATA NOTE H: Special requirements exist in relation to classification and labelling of this substance. This note applies to certain coal- and oil -derived substances and to certain entries for groups of substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP ### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. # Appropriate engineering controls - Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area. - Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. - Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. - Open-vessel systems are prohibited. - Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. - Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system. - For maintenance and decontamination activities, authorized employees entering the area should be provided with and Chemwatch: 5380-25 Page 7 of 20 Issue Date: 02/03/2020 Version No: 2.1.1.1 Print Date: 03/03/2020 #### NF Race Formula Octane Booster required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. - ▶ Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas). - Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air. - Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed. ### Personal protection # Safety glasses with side shields. - ▶ Chemical goggles. - ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### See Hand protection below ### ► Elbow length PVC gloves The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is
dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ## **Body protection** ## See Other protection below ### Other protection Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees ## Continued... # Eye and face protection # Skin protection # Hands/feet protection Version No: **2.1.1.1** #### **NF Race Formula Octane Booster** Issue Date: **02/03/2020**Print Date: **03/03/2020** entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. - Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. - ▶ Overalls. - ► PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ► Eyewash unit. - ▶ Ensure there is ready access to a safety shower. - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return ## Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|-------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ## **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ## Information on basic physical and chemical properties | Appearance | Clear thin amber liquid with a petroleum distillate odour; does not mix with water. | | | | |--|---|---|----------------|--| | | | | | | | Physical state | Liquid | Relative density (Water = 1) | 0.828 @ 15C | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | | Melting point / freezing point (°C) | Not Applicable | Viscosity (cSt) | Not Available | | | Initial boiling point and boiling range (°C) | >190 | Molecular weight (g/mol) | Not Applicable | | | Flash point (°C) | 75 | Taste | Not Available | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | Flammability | Combustible. | Oxidising properties | Not Available | | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Chemwatch: 5380-25 Page 9 of 20 Issue Date: 02/03/2020 Version No: 2.1.1.1 Print Date: 03/03/2020 #### **NF Race Formula Octane Booster** | Vapour pressure (kPa) | <0.133 | Gas group | Not Available | |--------------------------|---------------|-----------------------|---------------| | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### SECTION 11 TOXICOLOGICAL INFORMATION ## Information on toxicological effects Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce severely toxic effects; these may be fatal. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the
primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Signs of toxic response to MMT, after administration by all routes, appear quickly and involve the central nervous system. They include mild excitement, hyperactivity, tremours, severe clonic spasms, weakness, slow and laboured respiration, occasional mild, clonic convulsions and terminal coma. Animals surviving convulsive episodes failed to eat, lost weight rapidly and died within a few days. Central nervous system effects of MMT are similar to those produced by tetraethyl lead. Inhaled Acute exposure produces liver and kidney damage. All viscera were hyperaemic after exposure and petechial haemorrhage was evident in the lung. Histological examination showed degeneration and necrosis of the liver cells and renal tubules and degeneration of the cells of the cerebral cortex. Other changes include perivascular oedema of the lung, swelling and pyknosis of the cells of the intima and media. In use, MMT may degrade to produce carbon monoxide High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cvanosis). Ingestion Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging Chemwatch: **5380-25** Page **10** of **20** #### **NF Race Formula Octane Booster** Issue Date: **02/03/2020**Print Date: **03/03/2020** and a chemical pneumonitis with pulmonary oedema and haemorrhage. Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. ## **Skin Contact** Version No: 2.1.1.1 MMT penetrates the skin rapidly. A small quantity, estimated to be 5-15 ml, spilled on one hand and wrist was reported to cause a "thick tongue", giddiness, nausea, and headache within 3-5 minutes. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Skin contact with the material may produce severely toxic effects; systemic effects may result following absorption and these may be fatal. Aromatic hydrocarbons may produce skin irritation, vasodilation with erythema and changes in endothelial cell permeability. Systemic intoxication, resulting from contact with the light aromatics, is unlikely due to the slow rate of permeation. Branching of the side chain appears to increase percutaneous absorption. ## Eye Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. On the basis, primarily, of animal experiments, the material may be regarded as carcinogenic to humans. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in cancer on the basis of: - appropriate long-term animal studies - other relevant information There is sufficient evidence to provide a strong presumption that human exposure to the material may result in the development of heritable genetic damage, generally on the basis of - appropriate animal studies. - other relevant information Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have
complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties ## Animal studies: No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have ## Chronic Chemwatch: **5380-25** Page **11** of **20** Version No: 2.1.1.1 NF Race Formula Octane Booster Issue Date: **02/03/2020**Print Date: **03/03/2020** shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Long-term MMT inhalation, by animals, produced chronic bronchitis, peribronchitis, interstitial pneumonia and lung abscesses. In rats and mice, repeated oral exposure was associated with weight loss and mild neurological and developmental effects. Repeated inhalation exposure, in rats and mice, produced severe weight loss and fatalities. Histopathology showed degenerative changes in the lungs, liver and kidney | NF Race Formula Octane | TOXICITY | IRRITATION | | |---|---|---|--| | Booster | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | solvent naphtha | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): Irritating | | | petroleum, heavy aromatic | Inhalation (rat) LC50: >0.59 mg/l/4H ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Oral (rat) LD50: >2000 mg/kg ^[1] | Skin: adverse effect observed (irritating) ^[1] | | | | TOXICITY | IRRITATION | | | naphtha petroleum, light | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | aromatic solvent | Inhalation (rat) LC50: >7331.62506 mg/l/8h*[2] | Skin: adverse effect observed (irritating) ^[1] | | | | Oral (rat) LD50: >4500 mg/kg ^[1] | | | | | TOXICITY | IRRITATION | | | manganese | dermal (rat) LD50: 665 mg/kg ^[2] | Skin (rabbit): 100 mg/24h - mild | | | 2-methylcyclopentadienyl
tricarbonyl | Inhalation (rat) LC50: 0.055 mg/l/1h*[2] | | | | | Oral (rat) LD50: 8 mg/kg ^[2] | | | | | TOXICITY | IRRITATION | | | 1,2,4-trimethyl benzene | Dermal (rabbit) LD50: >3160 mg/kg ^[2] | Not Available | | | | Inhalation (rat) LC50: 18 mg/l/4hd ^[2] | | | | | Oral (rat) LD50: 5000 mg/kg ^[1] | | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. SOLVENT NAPHTHA PETROLEUM, HEAVY AROMATIC The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. for petroleum: Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline This product may contain benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents **Carcinogenicity:** Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Chemwatch: 5380-25 Page 12 of 20 Issue Date: 02/03/2020 Version No: 2.1.1.1 Print Date: 03/03/2020 #### NF Race Formula Octane Booster Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays. Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans. For C9 aromatics (typically trimethylbenzenes - TMBs) Acute Toxicity Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines. Irritation and Sensitization Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin,
minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified. Repeated Dose Toxicity Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6.500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs. The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects. Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers. In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category Reproductive and Developmental Toxicity Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full #### NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT Chemwatch: 5380-25 Page 13 of 20 Issue Date: 02/03/2020 Version No: 2.1.1.1 Print Date: 03/03/2020 #### NF Race Formula Octane Booster study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex /group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21. Systemic Effects on Parental Generations: The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3). Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation,, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality. Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring. Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity. * [Devoe] 551carbonyl For manganese 2-methylcyclopentadienyl tricarbonyl (MMT): ### **Genetic Toxicity** Bacterial Reverse Mutation Assay The test substance was not mutagenic in this assay with or without metabolic activation In Vitro Chromosomal Aberration Assay in CHO Cells An increase in the percentage of cells that contained
chromosome aberrations was observed in the presence of metabolic activation, but not in the absence of metabolic Mammalian Erythrocyte Micronucleus Test Two studies were performed, both of which showed no elevation in micronuclei, thus no genotoxicity. ## Repeated-dose Toxicity A 14 week inhalation study was conducted in rats, mice, and primates at dose levels of 0.3, 3.5, 30.2 ug/L. Significant toxicity was observed at the mid and high exposure levels. Based on the results of this study, it was concluded that the mouse was the species most sensitive to vapor inhalation exposure to this test material followed by the rat and monkey respectively. In addition female rodents appeared to be more sensitive then male rodents. A NOAEL of 0.3 ug/L was selected based on the increased blood urea nitrogen levels observed in rats at all exposure levels. ## **Developmental Toxicity** Pregnant female rats were dosed on gestation days 6-15 with 0, 2.0, 4.5, 6.5, or 9.0 mg/kg/day. Maternal toxicity was observed at the high dose level, 9 mg/kg, as evidenced by anogenital staining and maternal weight loss early in the treatment period. A slight reduction in mean fetal body weights and a slight to moderate reduction in mean maternal body weight over the entire gestation period were noted at all treatment dose levels. No significant developmental toxicity was observed. The NOAEL for maternal effects was 6.5 mg/kg and the NOAEL for developmental effects was >9 mg/kg (the highest dose tested). ### Reproductive Toxicity No published or unpublished reproductive toxicity studies on MMT were located; however, the 14 week repeat exposure inhalation study conducted in rats, mice and primates discussed above (dose levels of 0.3, 3.5, 30.2 ug/L) included the MANGANESE 2-METHYLCYCLOPENTADIENYL **TRICARBONYL** Chemwatch: 5380-25 Page 14 of 20 Issue Date: 02/03/2020 Version No: 2.1.1.1 Print Date: 03/03/2020 #### NF Race Formula Octane Booster microscopic evaluation of both male and female rat and mouse and male primate reproductive organs. No reproductive toxicity was observed at the high exposure level (30.2 ug/L) in any species. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. NOAEL (inhalation) 6.2 mg/m3 (rats and mice)* * Worksafe Australia ## 1,2,4-TRIMETHYL BENZENE Other Toxicity data is available for CHEMWATCH 12172 1,2,3-trimethylbenzene CHEMWATCH 2325 1,3,5trimethylbenzene Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation. without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. For trimethylbenzenes: Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion. After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates. The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2.4-dimethylbenzoic acid and 3.4-dimethylhippuric acid. The major routes of excretion of 1.2.4-trimethyl-benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates. Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis. High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness. The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg) . Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethyl- benzenes at 1700 ppm for 10 to 21 days Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1.3.5-trimethylbenzenes Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested. Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation. Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day. 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop- ## NAPHTHA PETROLEUM, LIGHT **AROMATIC SOLVENT & 1,2,4-**TRIMETHYL BENZENE Chemwatch: 5380-25 Page 15 of 20 Version No: 2.1.1.1 #### **NF Race Formula Octane Booster** benzenes, 4-6 hours/day, 5 days/week over one generation Issue Date: 02/03/2020 Print Date: 03/03/2020 mental neurotoxicity, was evident in rats in a 3-generation reproductive study No effects on fecundity or fertility occurred in rats treated
dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- | Acute Toxicity | ~ | Carcinogenicity | ✓ | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye
Damage/Irritation | × | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | ✓ | Aspiration Hazard | ✓ | ★ - Data either not available or does not fill the criteria for classification ✓ – Data available to make classification ## **SECTION 12 ECOLOGICAL INFORMATION** ## **Toxicity** | NE Page Formula Octors | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |--|------------------|------------------------------------|---|-------------------------|------------------| | NF Race Formula Octane
Booster | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 0.58mg/L | 2 | | solvent naphtha
petroleum, heavy aromatic | EC50 | 48 | Crustacea | 0.76mg/L | 2 | | ctroicum, neavy aromatio | EC50 | 72 | Algae or other aquatic plants | <1mg/L | 1 | | | NOEC | 96 | Algae or other aquatic plants | 0.12mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURC | | | LC50 | 96 | Fish | 4.1mg/L | 2 | | naphtha petroleum, light aromatic solvent | EC50 | 48 | Crustacea | 3.2mg/L | 2 | | aromatic solvent | EC50 | 72 | Algae or other aquatic plants | >1-mg/L | 2 | | | NOEC | 72 | Algae or other aquatic plants | =1mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURC | | manganese | LC50 | 96 | Fish | 0.21mg/L | 2 | | 2-methylcyclopentadienyl | EC50 | 48 | Crustacea | 0.83mg/L | 2 | | tricarbonyl | EC10 | 48 | Algae or other aquatic plants | 0.11mg/L | 2 | | | NOEC | 48 | Algae or other aquatic plants | 0.07mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURC | | 4.0.4 trimesthad become | LC50 | 96 | Fish | 1.318mg/L | 3 | | 1,2,4-trimethyl benzene | EC50 | 48 | Crustacea | ca.6.14mg/L | 2 | | | EC50 | 96 | Algae or other aquatic plants | 2.154mg/L | 3 | | Legend: | 3. EPIWIN Su | ite V3.12 (QSAR) - Aquatic Toxicit | e ECHA Registered Substances - Ecotoxicologi
y Data (Estimated) 4. US EPA, Ecotox database
NTE (Japan) - Bioconcentration Data 7. METI (J | e - Aquatic Toxicity De | ata 5. | Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For petroleum distillates: Environmental fate: When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradationanother fate process-can also be significant. As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons. Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas Version No: 2.1.1.1 Print Date: 03/03/2020 NF Race Formula Octane Booster aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials #### Biodegradation: Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons. Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows: - (1) n-alkanes, especially in the C10-C25 range, which are degraded readily; - (2) isoalkanes; - (3) alkenes; - (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms); - (5) monoaromatics: - (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and - (7) higher molecular weight cycloalkanes (which may degrade very slowly. Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues. When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil #### Bioaccumulation: Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential. Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13-C15 isoalkanes, C12 alkenes, C12-C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12-C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish. In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish. This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish ### Ecotoxicity: Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a
24-hour LC50 of 1.8 mg/L The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L.was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species . The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality ## DO NOT discharge into sewer or waterways. ## Persistence and degradability Ingredient Persistence: Water/Soil Persistence: Air Issue Date: **02/03/2020**Print Date: **03/03/2020** 1,2,4-trimethyl benzene LOW (Half-life = 56 days) LOW (Half-life = 0.67 days) ## **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---|-----------------| | solvent naphtha petroleum, heavy aromatic | LOW (BCF = 159) | | 1,2,4-trimethyl benzene | LOW (BCF = 275) | ## Mobility in soil | Ingredient | Mobility | |-------------------------|-------------------| | 1,2,4-trimethyl benzene | LOW (KOC = 717.6) | ### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ► Reuse - ► Recycling - ► Disposal (if all else fails) # Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ► Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ## **SECTION 14 TRANSPORT INFORMATION** ## **Labels Required** Marine Pollutant HAZCHEM 3Y ## Land transport (ADG) | UN number | r 3295 | | |---|--------|--| | UN proper shipping name HYDROCARBONS, LIQUID, N.O.S. (contains solvent naphtha petroleum, heavy aromatic) | | | Issue Date: **02/03/2020**Print Date: **03/03/2020** | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | |------------------------------|---|--|--| | Packing group | III | | | | Environmental hazard | Environmentally hazardous | | | | Special precautions for user | Special provisions 223 Limited quantity 5 L | | | ## Air transport (ICAO-IATA / DGR) | UN number | 3295 | | | | |------------------------------|---|----------------------------|---------|--| | UN proper shipping name | Hydrocarbons, liquid, n.o.s. (contains solvent naphtha petroleum, heavy aromatic) | | | | | Transport hazard class(es) | ICAO/IATA Class | 3 | | | | | ICAO / IATA Subrisk | k Not Applicable | | | | | ERG Code 3L | | | | | Packing group | III | | | | | Environmental hazard | Environmentally hazardous | | | | | | Special provisions | | A3 A324 | | | | Cargo Only Packing Instructions | | 366 | | | | Cargo Only Maximum Qty / Pack | | 220 L | | | Special precautions for user | Passenger and Cargo Packing Instructions | | 355 | | | usei | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 10 L | | ## Sea transport (IMDG-Code / GGVSee) | UN number | 3295 | | | |------------------------------|---|--|--| | UN proper shipping name | HYDROCARBONS, LIQUID, N.O.S. (contains solvent naphtha petroleum, heavy aromatic) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Marine Pollutant | | | | Special precautions for user | EMS Number F-E , S-D Special provisions 223 Limited Quantities 5 L | | | ## Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## **SECTION 15 REGULATORY INFORMATION** ## Safety, health and environmental regulations / legislation specific for the substance or mixture ## SOLVENT NAPHTHA PETROLEUM, HEAVY AROMATIC IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 $\,$ Australia Inventory of Chemical Substances (AICS) ## NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$ Australia Inventory of Chemical Substances (AICS) Chemical Footprint Project - Chemicals of High Concern List Version No: 2.1.1.1 #### NF Race Formula Octane Booster Issue Date: 02/03/2020 Print Date: 03/03/2020 ### MANGANESE 2-METHYLCYCLOPENTADIENYL TRICARBONYL IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7 (CCCIVIII) CONGGGIO ### 1,2,4-TRIMETHYL BENZENE IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) ## **National Inventory Status** | National Inventory | Status | | |----------------------------------|---|--| | Australia - AICS | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (naphtha petroleum, light aromatic solvent; manganese 2-methylcyclopentadienyl tricarbonyl; 1,2,4-trimethyl benzene; solvent naphtha petroleum, heavy aromatic) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | No (solvent naphtha petroleum, heavy aromatic) | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | No (manganese 2-methylcyclopentadienyl tricarbonyl) | | | Russia - ARIPS | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | ## **SECTION 16 OTHER INFORMATION** | Revision Date | 02/03/2020 | |---------------|------------| | Initial Date | 02/03/2020 | ### Other information
Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit $_{\circ}$ IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Chemwatch: 5380-25 Page 20 of 20 Issue Date: 02/03/2020 Version No: 2.1.1.1 Print Date: 03/03/2020 ## **NF Race Formula Octane Booster** This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.